Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Next revision
Previous revision
미적분:테일러급수 [2025/09/29 23:34] – created masteraccount미적분:테일러급수 [2025/09/30 00:55] (current) masteraccount
Line 1: Line 1:
-[[https://www.youtube.com/watch?v=9KYI94iweTY&t=658s:영상]] \\+[[https://www.youtube.com/watch?v=9KYI94iweTY&t=658s|영상]] \\
 \\ \\
  
Line 12: Line 12:
  
 ====예문==== ====예문====
-$ f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \frac{f'''(a)}{3!}(x-a)^3 + \cdots $+$ f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \frac{f'''(a)}{3!}(x-a)^3 + \cdots $ \\ 
 +\\ 
 + 
 +====매클로린 급수 (Maclaurin Series))==== 
 + 
 +===개념=== 
 +테일러 급수의 특별한 형태입니다. 함수 $f(x)$를 다항식으로 표현할 때, 전개의 중심점 a를 **0**으로 고정 \\ 
 +===공식=== 
 +$ \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = f(0) + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + \cdots $
  • 미적분/테일러급수.1759188887.txt.gz
  • Last modified: 2025/09/29 23:34
  • by masteraccount