Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
미적분:극한 [2025/09/27 18:36] masteraccount미적분:극한 [2025/09/27 18:37] (current) – [극한의 주요 정리] masteraccount
Line 19: Line 19:
 \begin{aligned} \begin{aligned}
 \text{1. } & \lim_{x \to c} k = k \\ \text{1. } & \lim_{x \to c} k = k \\
 +\\
 \text{2. } & \lim_{x \to c} x = c \\ \text{2. } & \lim_{x \to c} x = c \\
 +\\
 \text{3. } & \lim_{x \to c} k f(x) = k \lim_{x \to c} f(x) \\ \text{3. } & \lim_{x \to c} k f(x) = k \lim_{x \to c} f(x) \\
 +\\
 \text{4. } & \lim_{x \to c} [f(x) + g(x)] = \lim_{x \to c} f(x) + \lim_{x \to c} g(x) \\ \text{4. } & \lim_{x \to c} [f(x) + g(x)] = \lim_{x \to c} f(x) + \lim_{x \to c} g(x) \\
 +\\
 \text{5. } & \lim_{x \to c} [f(x) - g(x)] = \lim_{x \to c} f(x) - \lim_{x \to c} g(x) \\ \text{5. } & \lim_{x \to c} [f(x) - g(x)] = \lim_{x \to c} f(x) - \lim_{x \to c} g(x) \\
 +\\
 \text{6. } & \lim_{x \to c} [f(x) \cdot g(x)] = \left[\lim_{x \to c} f(x)\right] \cdot \left[\lim_{x \to c} g(x)\right] \\ \text{6. } & \lim_{x \to c} [f(x) \cdot g(x)] = \left[\lim_{x \to c} f(x)\right] \cdot \left[\lim_{x \to c} g(x)\right] \\
 +\\
 \text{7. } & \lim_{x \to c} \frac{f(x)}{g(x)} = \frac{\lim_{x \to c} f(x)}{\lim_{x \to c} g(x)}, \quad \lim_{x \to c} g(x) \neq 0 \\ \text{7. } & \lim_{x \to c} \frac{f(x)}{g(x)} = \frac{\lim_{x \to c} f(x)}{\lim_{x \to c} g(x)}, \quad \lim_{x \to c} g(x) \neq 0 \\
 +\\
 \text{8. } & \lim_{x \to c} [f(x)]^n = \left[\lim_{x \to c} f(x)\right]^n \\ \text{8. } & \lim_{x \to c} [f(x)]^n = \left[\lim_{x \to c} f(x)\right]^n \\
 +\\
 \text{9. } & \lim_{x \to c} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to c} f(x)}, \quad n=2m \text{이면 } \lim_{x \to c} f(x) > 0 \text{9. } & \lim_{x \to c} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to c} f(x)}, \quad n=2m \text{이면 } \lim_{x \to c} f(x) > 0
 +\\
 \end{aligned} \end{aligned}
 $$ $$
  • 미적분/극한.1758998217.txt.gz
  • Last modified: 2025/09/27 18:36
  • by masteraccount